Fast Learning for Statistical Face Detection
نویسندگان
چکیده
In this paper, we propose a novel learning method for face detection using discriminative feature selection. The main deficiency of the boosting algorithm for face detection is its long training time. Through statistical learning theory, our discriminative feature selection method can make the training process for face detection much faster than the boosting algorithm without degrading the generalization performance. Being different from the boosting algorithm which works in an iterative learning way, our method can directly solve the learning problem of face detection. Our method is a novel ensemble learning method for combining multiple weak classifiers. The most discriminative component classifiers are selected for the ensemble. Our experiments show that the proposed discriminative feature selection method is more efficient than the boosting algorithm for face detection.
منابع مشابه
A Novel Face Detection Method Based on Over-complete Incoherent Dictionary Learning
In this paper, face detection problem is considered using the concepts of compressive sensing technique. This technique includes dictionary learning procedure and sparse coding method to represent the structural content of input images. In the proposed method, dictionaries are learned in such a way that the trained models have the least degree of coherence to each other. The novelty of the prop...
متن کاملAuthenMetric F1: A Highly Accurate and Fast Face Recognition System
AuthenMetric F1 is a face-based biometric authentication system. Like Formula One (F1), the system is fast and accurate. Better than that F1, this F1 makes no disasters, hence can save money and human lives. As a demo at ICCV, it must have been made of scientific ingredients of computer vision, such as innovative imaging hardware, local feature extraction and statistical learning; it is further...
متن کاملHierarchical classification and feature reduction for fast face detection with support vector machines
We present a two-step method to speed-up object detection systems in computer vision that use support vector machines as classi ers. In the rst step we build a hierarchy of classi ers. On the bottom level, a simple and fast linear classi er analyzes the whole image and rejects large parts of the background. On the top level, a slower but more accurate classi er performs the nal detection. We pr...
متن کاملFeature Reduction and Hierarchy of Classifiers for Fast Object Detection in Video Images
We present a two-step method to speed-up object detection systems in computer vision that use Support Vector Machines (SVMs) as classifiers. In a first step we perform feature reduction by choosing relevant image features according to a measure derived from statistical learning theory. In a second step we build a hierarchy of classifiers. On the bottom level, a simple and fast classifier analyz...
متن کاملAcceleration technique for boosting classification and its application to face detection
We propose an acceleration technique for boosting classification without any loss of classification accuracy and apply it to a face detection task. In classification task, much effort has been spent on improving the classification accuracy and the computational cost of training. In addition to them, the computational cost of classification itself can be critical in several applications includin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006